2.11 Water Quality and Water Resources #### 2.11.1 Groundwater Resources No substantive change has occurred to this resource since publication of the 1996 FEIS. Refer to 1996 FEIS, Section 2.11.1. ### 2.11.2 Surface Water Characteristics No substantive change has occurred to surface water characteristics of streams since publication of the 1996 FEIS except for the upper the upper Black Partridge Creek watershed. A significant change has occurred in the land-use within this watershed. Since publication of the 1996 FEIS, a significant change has occurred in the land-use within the upper Black Partridge Creek watershed. Over the past three to four years, the on-going construction of an extensive industrial complex (warehouse distribution centers, light industry and office building complexes, their transportation corridors) has resulted in extensive changes to the entire Black Partridge Creek basin, most specifically to its two headwater tributaries. These changes include 1) periodic interruption, diversion, reduction and possible elimination of cool surface and groundwater flow; 2) extensive, poorly controlled erosion and subsequent siltation; 3) an increase in average water temperatures in the primary headwater reach of Black Partridge Creek from recently constructed shallow landscaped ponds (i.e., increased surface water runoff and intensive solar gain of ponded water); 4) the extensive removal of deciduous and other riparian vegetation from both headwater tributaries; and 5) the possibility of periodic point source contamination from industry. These occurrences have compromised water quality and the preferred habitat for the mottled sculpin (*Cottus bairdi*), other fishes and aquatic macroinvertibrates throughout the Black Partridge Creek basin. Black Partridge Creek still supports a fish community with the diversity and abundance of fishes similar to that supported by other streams of its size in northern Illinois. The mottled sculpin (*Cottus bairdi*) still occurs in large numbers in the area either side of Bluff Road, and was the most abundant species encountered during the 9 February and 19 May 1999 surveys. The absence of the central mudminnow (Umbra limi) and largemouth bass (Micrpterus salmiodes) during our 1999 surveys does not represent a biologically significant trend. Both species most likely emigrate and re-invade Black Partridge Creek periodically from other habitats (i.e., the Des Plaines River or sedge meadows along the lower reaches of Black Partridge Creek). The absence of fishes at Site 4 was also observed during each of the four 1994 visits – reflecting the seasonal characteristics of this intermittent tributary rather than suggesting a decline in suitable habitat for fishes. Tables 2-12 and 2-13 provide a summary of the biological and physical characteristics of the streams within the Project Corridor based on the 2000 Water Quality Technical Report. Refer to 1996 FEIS, Section 2.11.2. ### 2.11.3 Wetlands A reevaluation of wetland resources surveyed and described by Tessene, Morris and Brooks and Tessene and Morris (Brooks, 1992) was conducted in June 2000 by Plocher and Tessene of the Illinois Natural History Survey (INHS) (Plocher, 2000). Sites examined were 12/18/00 | | Table 2-12 Summary of Physical and Biological Characteristics of Streams within the Project Corridor | | | | | | | | | | |------------------------------------|--|---------------------------|--|------------------------|---|----------------------------------|--|---|--|--| | Stream | Total Drainage | | Drainage | Flow Characteristics1/ | Substrate ^{2/} | # of Fish | Aquatic Envi- | Watershed Characteristics. | | | | | Length,
Kilometers
(miles) | Area,
Sq km
(sq mi) | Area above
the Project
sq km (sq mi) | | | Species
Present ^{3/} | ronment Classi-
fication System ^{3/} | | | | | Tributary to Hickory
Creek | 4.8 (3.0) | 6.7 (2.6) | 3.1 (1.2) | Ι | silt and clay | | | Agricultural | | | | Spring Creek | 25.7 (16.0) | 51.8 (20) | 32.4 (12.5) | P | 50% gravel
35% sand
10% silt
5% rubble | 13 | Unbalanced | 40% of length channelized, agricultural and recreational land | | | | Fraction Run | 9.2 (5.7) | 16 (6) | 7.8 (3.0) | Ι | 40% clay
30% sand
30% gravel | 8 | Semi-polluted to unbalanced | Channelized downstream, agri-
cultural | | | | Fiddyment Creek | 6.0 (3.7) | 13 (5) | 7.0 (3.0) | P | silt, gravel, muck | | | Forested and agricultural areas | | | | Big Run Creek | 4.0 (2.5) | 8 (3) | 2.1 (0.8) | I | sand and clay | | | Forested and agricultural areas | | | | Long Run | 23.5 (14.6) | 73 (28) | 57.5 (22.2) | P | mud over gravel,
silt | 4 | Unbalanced | Residential, forested and agricultural areas | | | | Illinois and Michigan
Canal | 23.5 (14.6) | 140 (55) | N/A | PNF | bedrock covered with silt and gravel | | | Industrial | | | | Chicago Sanitary and
Ship Canal | 50.9 (31.6) | 1,900
(750) | N/A | P | bedrock covered
with sand and
gravel | | | Extensive urban and industrial development | | | | Des Plaines River | 188.3
(117.0) | 3,538
(1,366) | 1,772 (684.0) | Р | bedrock covered
with sand and
gravel | 11 | | Extensive urban and industrial development | | | | Black Partridge Creek | 2.7 (1.7) | 8 (3) | 0.5 (0.2) | I | mixture of sand,
gravel, pebbles &
silt | 6 | Semi-polluted | Commercial, agricultural and forested areas | | | ^{1/}Flow characteristics taken from U.S.G.S. topographic maps (Romeoville and Joliet Quadrangles) $I = Intermittent \ Flow; \ P = Permanent \ Flow; \ PNF = Pooled, \ No \ Flow$ ^{2/} Data from Ceas, et al., 1989, and Huff and Huff site visit in October, 2000. ^{3/} Data from Wetzel, et al., 1990. Classification system based upon the numbers and kind of aquatic macroinvertebrates collected and their assignment to one of four categories which reflect a species tolerance to a polluted environment. | Table 2-13 Water Quality Characteristics in the Project Corridor Based on IEPA Designated Use Classification ^{1/} | | | | | | | | | | |--|-----------------|----------------------------------|-----------------|----------------------------------|---|--|--|--|--| | Stream | | | Designated Use | | | Sources ^{3/} | | | | | | Overall Use | Fish Consumption | Aquatic Life | Swimming | Causes ^{2/} | | | | | | Hickory Creek | Partial support | Use exists, no data available | Partial support | Non-support | Suspended solids Salinity/TDS/Chlorides Metals Nitrates Phosphorus Nutrients Organic enrichment Other habitat alterations | Construction Municipal point sources Combined sewer overflows Land development Urban runoff/storm sewers Flow regulation/modification Industrial point sources | | | | | Spring Creek | Partial support | Use exists, no data available | Partial support | Use exists, no data available | Source unknown | Source unknown | | | | | Long Run | Full support | Use exists, no data available | Full support | Use exists, no data available | | | | | | | Chicago Sanitary
and Ship Canal | Full support | Use exists, no data
available | Partial support | Use does not apply to water body | Phosphorus Nitrogen Metals Organic enrichment Other habitat alterations Nutrients Pathogens pH | Municipal point sources In-place contaminants Industrial point sources Channelization Combined sewer overflow | | | | | Des Plaines River | Partial support | Full support | Partial support | Non-support | Nutrients Salinity/TDS/Chlorides Organic enrichment Metals Suspended Solids | Urban runoff/storm sewers Municipal point sources Highway maintenance, runoff Land development Construction Combined sewer overflow | | | | ^{1/} Data taken from IEPA, Water Quality Technical Report, 2000. ^{2/} Causes – indicates causes of impaired use and the magnitude to which the cause contributes to the use impairment. 3/ Sources – indicates the sources that contribute to the causes above the magnitude to which the source contributes to the use impairment. within or near a 305 meter (1,000 foot) wide corridor approximately following the proposed centerline of the I-355 South Extension. In the last eight years, the vast majority of the plant communities at these sites have undergone significant shifts in species dominance. Therefore, new wetland delineations were performed on all sites considered to be wetlands in the previous reports. The significant physical alteration or natural change observed at some of the sites is described in the 2000 Wetland Technical Delineation Report (Plocher, 2000). Of the forty-two sites previously examined, six had been physically altered, generally by earth moving activities; one site completely drained, and one completely filled. Four sites exhibited significant increases in the shrub component, four sites showed obvious decreases in species diversity, and the remaining 28 sites still present remained unchanged except for shifts in dominance. The additional plant communities in the wetland complex at Site 9 not described in the previous wetland report are described and delineated in the 2000 Wetland Technical Delineation Report completed by Plocher and Tessene. The six wetland community types in the Des Plaines River Valley, previously flagged in the field, and described in a Cover Type Report are delineated in the 2000 Wetland Technical Delineation Report. Two new wetland sites (12A and 41A) were delineated. Several new artificial ponds (sediment retention basins) have been con- structed within the Project Corridor. These are not considered to be wetlands, and are not described in the 2000 Wetland Technical Delineation Report. Species lists and Floristic Quality Indices are only reported for those sites considered to be of at least fairly good natural quality. Table 2-14 categorizes by type the 39 wetlands delineated in the Project Corridor in the June 2000 update. Table 2-15 inventories individual wetlands delineated by the June 2000 update. Exhibits 2-11 through 2-13 locates these wetlands. | Table 2-14 Year 2000 Summary of Wetlands by Type | | | | | | | | |--|-----------------------|-------------------------------|--|--|--|--|--| | No. of Wetlands | Wetland Type | No. of
Hectares
(Acres) | | | | | | | 16 | Emergent | 32.93 (81.35) | | | | | | | 6 | Unconsolidated bottom | 1.25 (3.08) | | | | | | | 3 | Farmed | 0.78 (1.92) | | | | | | | 11 | Forested wetlands | 17.91 (44.25) | | | | | | | 3 | Excavated | 0.74 (1.82) | | | | | | | Totals 39 | | 53.61 (132.42) | | | | | | # 2.11.4 Floodplains No substantive change has occurred to this resource since publication of the 1996 FEIS. Refer to 1996 FEIS, Section 2.11.4. ### 2.11.5 **Seeps** No substantive change has occurred to this resource since publication of the 1996 FEIS. Refer to 1996 FEIS, Section 2.11.5. | | | Summary of V | Tabl
Vetland Charact | e 2-15
eristics in th | e Project Co | orridor¹/ | | | |-----------------------|-------------------------------------|--------------------------------------|--|--------------------------|---|---|--|---| | Map ^{2/} No. | NWI
Classification ^{3/} | NRCS
Classification ^{4/} | Predominant
Vegetation | Soil Type ^{5/} | Basin
Structure | Floristic
Quality
Index ^{6/} | Functional
Values ^{7/} | Wetland
Size,
hectares
(acres) | | 1 | PEMC | W | narrow leaf cattail | Ashkum | Depression
in crop
Field | Low | Sediment and
nutrient trap-
ping, water-
fowl habitat | 0.43 (1.06) | | 6 | ND (PEMC) | W | sandbar willow
reed canary grass | Ashkum | Depression | Low | Sediment and nutrient trapping | 0.28 (0.70) | | 8 | PEMAf | FW/TD | rough barnyard
grass
rough cocklebur | Ashkum | Low, Level
Area | Low | Sediment and
nutrient trap-
ping, water-
fowl habitat | 0.34 (0.83) | | 9A | PFO1C | ND (W) | tussock sedge
water smart weed | ND (prev.
Ashkum) | Depression | 20.4 | Sediment and
nutrient
trapping | 0.31 (0.77) | | 9B | PFO1C | ND (W) | american elm
box elder
grey dogwood
clustered black
snakeroot
eastern poison
ivy | Ashkum | Depression | Low | Sediment and
nutrient
trapping | (See 9E) | | 9C | PEMC
PFO1C | ND (W) | broad leaf cattail
bur reed | ND | Depression | Low | Sediment and nutrient trapping | 1.62 (4.0) | | 9D | PEMC
PFO1C | ND (W) | black willow
sandbar willow
reed canary grass | ND | Depression | Low | Sediment and nutrient trapping | (See 9E) | | 9E | PEMC | ND (W) | eastern cotton-
wood
black willow
reed canary grass | ND | Depression | Low | Sediment and
nutrient
trapping | 3.49 (8.63)
Also in-
cludes 9B
and 9D. | | 10 | PEMC | | reed canary grass
quack grass
eastern cotton-
wood | ND (prev.
Ashkum) | Low, Level
Area | Low | Sediment and
nutrient
trapping | 1.1 (2.7) | | 12 | PEMC | W | reed canary grass | ND (prev.
Ashkum) | Depression | Low | Sediment and
nutrient
trapping | 0.51 (1.25) | | 12A ^{9/} | ND (PEMC) | ND (W) | reed canary grass | Ashkum | Depression | Low | Sediment and nutrient trapping | 0.12 (0.30) | | 14 | PUBGh | W | sandbar willow
reed canary grass
narrow leaf cattail | ND | Depression (pond) | Low | Sediment and nutrient trapping | 0.40 (1.0) | | 16 | PUBFx | ND (W) | sandbar willow
reed canary grass
tall buttercup | ND | Depression
(pond in
active live-
stock
pasture) | Low | Sediment and
nutrient Trap-
ping, water-
fowl habitat | 0.21 (0.51) | | | | Summary of V | Tabl
Vetland Charact | e 2-15
eristics in th | e Project Co | orridor¹/ | | | |-----------------------|-------------------------------------|--------------------------------------|--|--------------------------|--|---|--|---| | Map ^{2/} No. | NWI
Classification ^{3/} | NRCS
Classification ^{4/} | Predominant
Vegetation | Soil Type ^{5/} | Basin
Structure | Floristic
Quality
Index ^{6/} | Functional
Values ^{7/} | Wetland
Size,
hectares
(acres) | | 17 | PFO1C | ND (W) | reed canary grass
river bulrush | ND (prev.
Ashkum) | Along Big
Run Creek,
low, level
area | 17.2 | Sediment and
nutrient trap-
ping, wildlife
habitat, flood
storage | 0.85 (2.1) | | 18 | PFO1C | ND (W) | green ash
american elm
box elder
common snake-
root
reed canary grass | Ashkum | Along Big
Run Creek,
low, level
flood plain | 20.6 | Sediment and
nutrient trap-
ping, flood
storage, and
wildlife
habitat | 2.3 (5.7) | | 20 | ND (PFO) | ND (W) | silver maple
swamp white oak
poison ivy | Ashkum | Headwaters
of two
streams,
low, level
area | 19.8 | Flood storage | 1.28 (3.17) | | 21 | ND (PFO) | ND | swamp white oak
green ash
poison ivy | Ashkum | Low, level area | Low | Flood storage | 0.29 (0.72) | | 22 | ND (PEM) | ND | green ash
common cattail
reed canary grass | ND (prev.
Ashkum) | Low, level area | Low | Sediment and nutrient trapping | 0.41 (1.02) | | 23 | ND (PFO/SS) | ND (W) | american elm
pale dogwood
green ash
panicled aster | Ashkum | Low, level area | Low | Sediment
trapping,
flood storage | 0.47 (1.15) | | 24 | ND (PUB) | ND | pale dogwood
common duck-
weed
white willow | ND | Depression (pond) | Low | Sediment
trapping,
flood storage | 0.07 (0.18) | | 25 | ND (PEM) | ND | gray dogwood
panicled aster | Ashkum | Low, level area | 18.8 | Small site
with high
diversity | 0.16 (0.40) | | 26 | PUBGx | W | rice cutgrass
sandbar willow
narrow leaf cattail | ND | Depression (pond) | Low | Sediment
trapping,
flood storage | 0.18 (0.44) | | 28 | PUBG | ND (W) | black willow
sandbar willow
narrow leaf cattail | ND | Depression (pond) | Low | Wildlife
support | 0.44 (1.1) | | 30 | PEMC | W | black willow
reed canary grass
narrow leaf cattail | Ashkum | Depression | Low | Sediment and
nutrient trap-
ping | 0.89 (2.2) | | 31 | PEMC | ND (W) | pond weed
narrow leaf cattail | ND | Excavated
Depression | 17.6 | Sediment and nutrient trapping | 0.79 (1.95) | | 32 | ND (PFO) | ND | cottonwood
black willow
reed canary grass | ND | Low, level area | Low | Wildlife
support | 0.65 (1.6) | | 33 | PEMC | ND | quackgrass
redtop
panicled aster | Ashkum | Low, level area | Low | Flood storage,
wildlife habi-
tat | 0.73 (1.8) | | | Table 2-15 Summary of Wetland Characteristics in the Project Corridor ^{1/} | | | | | | | | | | |-----------------------|---|--------------------------------------|---|---|---|---|---|---|--|--| | Map ^{2/} No. | NWI
Classification ^{3/} | NRCS
Classification ^{4/} | Predominant
Vegetation | Soil Type ^{5/} | Basin
Structure | Floristic
Quality
Index ^{6/} | Functional
Values ^{7/} | Wetland
Size,
hectares
(acres) | | | | 34 | ND (PUB) | ND (W) | rice cutgrass
common cattail | ND | Depression
(pond) | Low | Sediment and
nutrient trap-
ping, flood
storage and
wildlife habi-
tat | 0.14 (0.35) | | | | 35 | PUBG | ND (AW) | narrow leaf cattail | ND | Excavated
Depression | Low | Sediment and
nutrient trap-
ping flood
storage, wa-
terfowl habi-
tat | 0.12 (0.29) | | | | 37 | PUBF | ND (AW) | box elder
side flowered
aster
reed canary grass | ND | Partially
filled
depression | Low | Sediment
trapping | 0.06 (0.16) | | | | 38 | PUBGx | ND (AW) | box elder
reed canary grass | Drummer | Depression | Low | Flood storage | 0.35 (0.87) | | | | 39 | PEMC | ND (W) | cottonwood
black willow
fowl manna grass
virginia wild rye | Drummer | Near head-
waters of
branch of
Black Par-
tridge
Creek, low,
level area | 15.6 | Sediment and
nutrient trap-
ping, flood
storage | 0.48 (1.18) | | | | 41 | PEMAf | ND (W) | common cattail
crack willow
narrow leaf cattail
sandbar willow | ND (prev.
Drummer) | Depression | Low | Sediment and
nutrient
trapping | 0.31 (0.76) | | | | 41A ^{9/} | ND (PEMAf) | ND (W) | narrow leaf cattail | ND | Depression
adjacent to
pond | Low | Sediment and
nutrient
trapping | 0.13 (0.33) | | | | 429/ | PEMF
PSSI/EMF
PFO1C | ND | common cattail
narrow leaf cattail
rice cutgrass
reed canary grass | ND (mapped
as Romeo,
Sawmill,
pits/quarry) | Flood plain
adjacent to
Des Plaines
River | Low | Sediment
trapping,
flood storage,
wildlife
habitat | 16.9 (41.6) 8/ | | | | 43 | PEMF
PSSI/EMF | ND (W) | silver maple
reed canary grass | ND (mapped
as Romeo) | Flood plain
of the Des
Plaines
River | Low | Sediment and
nutrient trap-
ping, flood
storage, wild-
life habitat | 9.7 (24) 8/ | | | | 44 | PFO1C
PEMF | ND | cottonwood
black willow
box elder
reed canary grass
rice cutgrass
blue joint grass | Sawmill and
ND (mapped
as Sawmill
and Romeo) | Flood plain
of Des
Plaines
River | 17.9 | Sediment
trapping,
flood storage,
wildlife
habitat | 4.9 (12.1) 8/ | | | | 469/ | PFO1C | ND | fowl manna grass
jewel weed
rice cutgrass | ND (mapped as Romeo) | Flood plain
of the Des
Plaines
River | 20.7 | Sediment and
nutrient trap-
ping, flood
storage | 0.4 (1.0) | | | | | Table 2-15 Summary of Wetland Characteristics in the Project Corridor ^{1/} | | | | | | | | | |-----------------------|---|--------------------------------------|---------------------------------------|--|---|---|--|---|--| | Map ^{2/} No. | NWI
Classification ^{3/} | NRCS
Classification ^{4/} | Predominant
Vegetation | Soil Type ^{5/} | Basin
Structure | Floristic
Quality
Index ^{6/} | Functional
Values ^{7/} | Wetland
Size,
hectares
(acres) | | | 47 ^{9/} | PEMF
PFO1C | ND | coon's tail
duck weed
pond weed | ND (mapped
as Romeo
and pits,
quarry) | Flood plain
of Des
Plaines
River | Low | Sediment
trapping,
flood storage | 1.8 (4.5) | | | | | | | | | | Total Size of
Wetlands in
FAP Route
340 Project
Corridor | 53.61
hectares
(132.42
acres) | | - 1/ All potential wetlands within 300 meters (1,000 feet) of the proposed centerline of the Preferred Alternative were reexamined. Determinations were performed using the three parameter criteria (Environmental Laboratory 1987). Current delineations completed by Plocher and Tessene (2000). - 2/ Wetlands keyed to map (Exhibits 2-12, 2-13, 2-14, 4-2, 4-3 and 4-4) with exception of those that no longer fit the criteria to be classified as wetlands (No. 2, 11, 13 and 36). - 3/ Wetland Class as depicted on National Wetland Inventory (NWI) maps (Mokena, Joliet, and Romeoville 7.5 minute Quadrangles): ND (Not depicted on maps); NWI codes in parenthesis from Plocher and Tessene (1992). - 4/ Wetlands are depicted on National Resource Conservation Service (NRCS) maps key: W (Wetland); FW/TD (Farmed Wetland, tile drained); AW (Artificial Wetland); ND (Not depicted on maps). NRCS codes in parenthesis from 1992 Wetland Technical Delineation Report. - 5/ All soil types are hydric soils. Soil types from field observations (Plocher and Tessene (2000)). "Undetermined" indicates that the site is permanently flooded and that soil characterization was not done. The soil is considered saturated for a long duration during the growing season and, therefore, meets the hydric soil criterion. - 6/ The Floristic Quality Index, Developed by Taft, Ladd, Willhelm and Masters (1997) and previously named the Natural Areas Rating Index, was only applied to the vegetation of sites considered to be of at least fairly good natural quality. - 7/ Functional Values were derived from observation. - 8/ These wetlands extend for approximately 16 kilometers (10 miles) along the Des Plaines River. The size of forested and emergent areas refers to the Project Corridor only. - 9/ These sites have been added or divided since the publication of the 1992 Wetland Survey.